0606 ## The Potential Use of Natural Essential Oils in the Fumigation of Stored Agricultural Products Zlatko Korunic^{1*}, Vlatka Rozman² and Irma Kalinovic² Abstract: The authors give an overview of the concentrations of essential oils to control insect pests of stored grain, analyze the current prices of essential oils on the market and the cost of the fumigation, and discuss the potential of the introduction and the use of essential oil to fumigate stored grain. As with other groups of insecticides, the potential use of the natural essential oils (EO) in stored grain insect pest management depends on many barriers. Some of the barriers that may greatly prevent the adoption and use of the natural EO in stored grain fumigation are their relatively high concentrations needed for the effective protection of stored grain, a great difference in the sensitivity of various insect species, significant effect of different quantity of grain on the effectiveness and the current prices of natural essential oils on the market. Very high prices of essential oils, considering other characteristics (scent, sorption, penetration, aeration, etc.), may be really a very serious limiting factor for the application of natural essential oils in practice. There are two possible solutions to overcome the mentioned limiting factor; significant reduction of the prices of natural EO, or the production of the active components of natural EO synthetically. Key words: essential oils, fumigation, cost price, stored agricultural products #### Introduction During the past few decades application of synthetic pesticides to control agricultural pests has been a standard practice. However, with the growing evidence regarding detrimental effects of many of the conventional pesticides on health and environment, require for safer means of pest management has become very crucial [1]. Despite of the numerous and ongoing research that have been conducted with new grain protectants, synthetic and natural ones, only a few have been adopted to be use as grain protectants (Daglish, 2006) [2]. The restrictions on the use of fumigants have posse new global challenges to food and chemical industry and have resulted in effort to develop and register new fumigants as an alternative, primary to methyl bromide $^{[3,4]}$. There are several new developed fumigants or newer fumigant formulations such as sulfuryl fluoride $^{[5,6,7]}$, carbonyl sulphide $^{[3,4]}$, propylene oxide $^{[8,9,10]}$, methyl iodide $^{[11]}$, ozone $^{[12]}$, ethyl formate $^{[13]}$, cyanogen $^{[14]}$ and ethan Di Nitrile $^{[3,4]}$. The use of botanical pesticides has been emerging as one of prime means to protect crops and their products and the environment from pesticide pollution, which is a global problem^[16,17]. When extracted from plants, these chemicals are referred to collectively as "botanicals". Since most of them generally degrade within a few days, and sometimes within a few hours, these insecticides must be applied more often. More frequent application, plus higher costs of production usually makes botanicals more expensive to use than synthetic insecticides^[16]. Among botanicals the plant volatile essential oils (EO) are the most frequently studied as pesticides for pest and diseases mana gement^[18,17,19,20,21,22]. However, the essential oils, beside a large scale demonstration of their efficacy and penetration, need a lot of research in order to determine their toxicological and safety data prior to the re-registration^[2]. Also, as with other groups of insecticides, the potential use of the natural EO in stored grain insect pest management depends on many factors. Isman (1997) [23] believed, in spite of mostly favourable toxicology and minimal environmental impact and the efficacy, botanicals and other natural insecticides need to fulfil many other considerations for the successful commercialization and use and this group of insecticides may find a place in applications where there is a greater tolerance for the presence of insects and a focus is placed on environmental safety. ^{1.} Diatom Research and Consulting Inc. ,14 Greenwich Dr. , Guelph , ON N1H 8B8 Canada [* zkorunic@ rogers. com] ^{2.} Faculty of Agriculture, University of J. J. Strossmayer in Osijek, Trg Sv. Trojstva 3, HR - 31000 Osijek, Croatia According to Rajendran and Sriranjini (2008)^[24], although in laboratory tests with adult insects some of the plant extracts have shown significant insect toxicity, their physical properties such as high boiling point, high molecular weight and very low vapour pressure are barriers for application in large-scale fumigations. The authors believe that plant products have the potential for small-scale treatments and space fumigations. Still there is lack of data for single or multiple components of essential oils on sorption, tainting and residues in food commodities. Also, the requirements for the registration of plant products may be another barrier^[24]. We believe that the other of factors that may greatly prevent the adaptation and use of the natural EO in stored grain fumigation are their relatively high concentrations needed for the effective protection of stored grain against insect pests, a great difference in the sensitivity of various insect species and the current prices of natural essential oils on the market. The objectives of this review paper are: (a) to give an overview of the concentrations of essential oils to control insect pests of stored grain, - (b) to analyze the current prices of essential oils on the market and the cost of the fumigation, and - (c) to discuss the potential of the introduction and the use of essential oil to fumigate stored grain. ### Overview of Concentrations of Essential Oils to Control Stored Grain Insect The concentrations of natural EO and its active components needed for effective fumigation have been studied by many researchers. In order to enable the comparison of toxicity data we analyzed only the reports that presented the doses of EO in the volume, mostly in $\mu g/L$ or $\mu L/L$, published during the last 10 years. Shaaya et al. (1997) [18] were assessed the fumigant activities of a large number of essential oils extracted from various spices and herb plants against *Tribolium castaneum* (Herbst) *Sitophilus oryzae* (L.), *Rhyzopertha dominica* (F.) and *Oryzaephilus surinamensis* (L.). The highly active *Labiatae* sp. oil ZP51, in a concentration of 1.4 – 4.5 μL/L air and exposure time of 24 h caused 90% kill of all the insects in space tests. However, in columns 70% filled with wheat, a concentration of 50 μL/L and 7 d exposure were needed to obtain 94% – 100% kill of the insects. Liu and Ho(1999) [25] evaluated the fumigant activities of the essential oil extracted from *Evodia rutaecarpa* Hook f. et Thomas, against *Sitophilus zeamais* (Motsch.) adults and *T. castaneum* larvae and adults. *S. zeamais* LC₅₀ was 41 μ g/L air and *T. castaneum* LC₅₀ was 11.7 μ g/L air. Rahman and Schmidt(1999) [26] examined the toxic effects of vapors of essential oils of *Acorus calamus* (L.) rhizomes obtained from three countries; India, Russia, and Former Yugoslavia on the adults and eggs of *Callosobruchus phaseoli* (Gyllenhal) reared on seeds of *Lablab purpureus* (Medik.). Significant reduction of oviposition was found in oils vapors at 5 and 10 µL oil per 400 mL jar(12.5 to 25 µL oil per 1000 ml jar) after 24 h exposure. Newly-laid eggs were more susceptible than older ones. Tun et al. (2000)^[27] tested the ovicidal activity of essential oil vapors distilled from anise Pimpinella anisum (L.), cumin Cuminum cyminum (L.), eucalyptus Eucalyptus camaldulensis (Dehnh.), oregano Origanum syriacum (L.) var. bevanii and rosemary Rosmarinus officinalis (L.) against the confused flour beetle, Tribolium confusum (du Val.), and the Mediterranean flour moth, Ephestia kuehniella (Zeller). The exposure to vapours of essential oils from anise and cumin resulted in 100% mortality of the eggs. At a concentration of 98.5 μL/L of anise essential oil the LT₉₉ values were 60.9 and 253.0 hours for E. kuehniella and T. confusum, respectively. For the same concentration of the essential oil of cumin, the LT_{oo} value for E. kuehniella was 127.0 h. Sánchez-Ramos and Castañera (2000) [28] found out that the vapor of natural monoterpenes pulegone, eucalyptol, linalool, fenchone, menthone, α – terpinene and γ – terpinene at the concentration of 14 μ L/L or below generated 90% mortality of mobile stages of *Tyrophagus putrescentiae* (Schrank). Lee et al. $(2001)^{\lceil 29 \rceil}$ examined the fumigant toxicity of different essential oils towards the rice weevil, *S. oryzae*. The essential oil from eucalyptus contained 1,8 – cineole (81.1%), limonene (7.6%) and α – pinene (4.0%). The oil generated LD₅₀ = 28.9 L/L air. 1,8 – cineole was more active (LD₅₀ = 23.5 μ L/L air) than limenone and α – pinene. Benzaldehyde (LD₅₀ = 8.65 μ L/L air) occurring in peach and almond kernels had also a potent fumigant toxicity towards the rice weevils. Papachristos and Stamopoulos (2002) ^[30] assessed the toxicity of vapours of the essential oils from *Lavandula hybrida* (Reverch.), *R. officinalis* and *Eucalyptus globulus* (Lab.) against the larvae and pupae of *Acanthoscelides obtectus* (Say.). The essential oil vapours were toxic to all immature stages tested with LC₅₀ values ranging between 0.6 and 76 μL/L air, depending on oil and development stages. Lee et al. $(2003)^{[20]}$ evaluated the fumigant toxicity of twenty naturally occurring monoterpenoids against *S. oryzae*, *T. castaneum*, *O. surinamensis*, the house fly, *Musca domestica* L., and the German cockroach, *Blattella germanica* L. Cineole, l – fenchone, and pulegone at $50\mu \text{g/mL}$ air caused 100% mortality in all five species tested. Lee et al. $(2004)^{[21]}$ studied the potent fumigant toxicity of 42 essential oils and found out that six of them extracted form Eucalyptus nicholi (Maiden & Blakely) , E. codonocarpa (Blakely & McKie), E. blakely (Maiden), Callistemon sieberi (F. Muell.), Melaleuca fulgens (R. Br.) and M. armillary (R. Br.) were toxic to S. oryzae, R. dominica and T. castaneum. The LD 50 and LD 95 against the adults of S. oryzae were between 19.0 to 30.6 and 43.6 to 56.0 µg/mL air, respectively. The LD95 of 1, 8 - cineole was for S. oryzae 47. 9, for R. dominica 30.4 and for T. castaneum 21.0 µg/ mL air. The fumigant toxicity of five oils in the space 50% filled up with wheat was 3 to 5 times lower in 50% filled up the space than in an empty space and in a case of EO extracted from E. codonocarpa in 50% filled up the space with wheat, even 9 times less toxic. Prajapati et al. (2005)^[31] were evaluated the insecticidal, repellent and oviposition – deterrent activity of essential oils extracted from 10 medicinal plants against *Anopheles stephensi* (Liston), *Aedes aegypti* (L.) and *Culex quinquefasciatus* (Say.). The essential oil of *Pimpinella anisum* (L.) showed toxicity against 4th instar larvae of *A. stephensi* and *A. aegypti* with equivalent LD₉₅ values of 115.7 µg/mL, whereas it was 149.7 µg/mL against *C. quinquefasciatus* larvae. Essential oils of *Zingiber officinale* and *Rosmarinus officinalis* were found to be ovicidal and repellent, respectively towards the three mosquito species. Ketoh et al. (2005)^[32] studied the effectiveness of the essential oil extracted from *Cymbopogon schoenanthus* (L.) against all development studies of *Callosobruchus maculatus* (Fab.). At the highest concentration tested (33.3 μ L/L) all adults of *C. maculatus* were killed within 24 h of exposure to the oil and the development of newly laid eggs and neonate larvae was also inhibited. Ketoh et al. (2006) [33] assessed the insecticidal activity of crude essential oil extracted from Cymbopogon schoenanthus (L.) and of its main constituent, piperitone, on different developmental stages of C. maculatus. Piperitone was more toxic to adults with a LC50 value of $1.6\mu L/L$ vs. $2.7~\mu L/L$ obtained with the crude extract. Tapondjou et al. $(2005)^{[34]}$ investigated the toxicity of cymol and essential oils of *Cupressus sempervirens* (L.) and *Eucalyptus saligna* (Sm.) against *S. zeamais* and *T. confusum. Eucalyptus* oil was more toxic than *Cupressus* oil to both insect species ($LD_{50} = 0.36\mu L/cm^2$ for *S. zeamais* and $0.48\mu L/cm^2$ for *T. confusum*) on filter paper discs, and was more toxic to *S. zeamais* on maize ($LD_{50} = 38.05\mu L$ per 40g grain). Wang et al. (2006) [35] investigated repellent and fumigant activity of essential oil from mugwort *Artemisia vulgaris* (L.) to *T. castaneum*. At 8.0 µL/mL, mortality of adults reached 100%, but with 12 – ,14 – and 16 – day larvae, mortalities were 49%, 53% and 52%, respectively. At dosages of 10,15 and 20 µL/L air and a 96 h exposure period, mortality of eggs reached 100%. No larvae, pupae and adults were observed following a 60 L/L dosage. Choi Won-Sik et al. $(2006)^{\lceil 36 \rceil}$ determined the toxicity of volatile components of thyme, sage, eucalyptus, and clove bud against the mushroom sciarid, *Lycoriella mali* (Fitch.) α – Pinene was the most toxic fumigant compound found in thyme essential oil (LD₅₀ = 9.85 μ L/L air) followed by β – pinene (LD₅₀ = 11.85 μ L/L air) and linalool (LD₅₀ = 21.15 μ L/L air). The mixture of α – and β – pinene exhibited stronger fumigant toxicity than α – or β – pinene itself against the mushroom fly adults. Negahban et al. $(2007)^{[37]}$ determined the content of essential oil extracted form *Artemisia sieberi* (Besser). The oil contained camphor (54.7%), camphene (11.7%), 1,8 – cineol (9.9%), β – thujone (5.6%) and α – pinene (2.5%). The mortality of 7 days old adults of *C. maculatus*, *S. oryzae*, and *T. castaneum* increased with concentration from 37 to 926 μ L/L and with exposure time from 3 to 24 h. A concentration of 37 μ L/L and an exposure time of 24 h were sufficient to obtain 100% kill of the insects. *C. maculatus* was significantly more susceptible than *S. oryzae* and *T. castaneum*. Rozman et al. (2007)^[22] investigated the toxicity of 1,8 - cineole, camphor, eugenol, linalool, carvacrol, thymol, borneol, bornyl acetate and linally acetate against adults of S. oryzae, R. dominica and T. castaneum. The most sensitive species was S. oryzae, followed by R. dominica. T. castaneum was highly tolerant of the tested compounds. 1,8 - cineole, borneol and thymol were highly effective against S. oryzae when applied for 24 h at the lowest dose (0. 14 μ L/L). For R. dominica camphor and linalool were highly effective and produced 100% mortality in the same conditions. Against T. castaneum no oil compounds achieved more than 20% mortality after exposure for 24 h, even with the highest dose (139 µL/L). However, after 7 days exposure, 1,8 - cineole produced 92.5% mortality, followed by camphor (77.5%) and linalool(70.0%). Stamopoulos et al. $(2007)^{\lceil 38 \rceil}$ were tested vapor form of monoterpenoids terpinen -4 – ol, 1, 8 – cineole, linalool, R – (+) – limonene and geraniol against different stages of T. confusum. The LC₅₀ values ranging between 1. 1 and $109.4~\mu$ L/L air) for terpinen -4 – 01, from 4 and $278~\mu$ L/L air for (R) – (+) – limonene (with LC₅₀ and from 1,8 – cineole 3.5 and 466 μ L/L air were the most toxic to all stages tested, followed by linalool (with LC₅₀ values ranging between 8.6 and $183.5~\mu$ L/L air) while the least toxic monoterpenoid tested was geraniol with LC₅₀ values ranging between 607 and $1627~\mu$ L/L air. Korunic and Rozman (2008) [39] carried out three different experiments with 1,8 – cine-ole and found out that the space occupied with different quantity of grain had a significant effect on the effectiveness of cineole against *S. oryzae*, *R. dominica*, *T. castaneum* and *Cryptolestes ferrugineus* (Steph.). The space occupied with more grain significantly reduced the efficacy of cineole against test insects. The results of Shaaya et al. (1997)^[25], Lee et al. (2004)^[21] and Korunic and Rozman (2008)^[39] demonstrated the significant effect of different quantity of wheat grain in the same volume on the effectiveness of EO against stored grain insect pests. In a space filled with grains for the successful control several times higher concentrations has to be applied in the comparison with concentrations applied in an empty space. This may be one of a very important limited factor for wider use of EO in grain fumigation. ### **Current Price of Essential Oils on the Market and the Cost of the Fumigation** Currently, EO are sold in different packages containing 5 ml, 14. 75 g (1/2 oz) up to 907.2 g(32 oz) and 3780 ml (US gallon). The prices depend on the type of the essential oil, technology of the extraction, the size of the package and on producers, as well. The prices of EO sold by different producers, generally speaking, may be significantly different (Table 1). The size of the package greatly affects the cost of EO. One gram of Citronella EO in the package of 14.175 g(1/2 oz) costs US \$ 0. 49 but in a gallon (3789 ml) 1 mL. costs US \$0.065; 1g of Lavandin organic EO in the package of 14. 175g costs US \$ 0.69 costs but in a gallon 1 mL costs US \$0.16;1 g of Lavender Provence - Organic EO in a package of 14. 175 g costs US \$ 1. 28 but in a gallon 1 mL costs US \$0.46, etc. Also, the prices of various EO are significantly different. For example, in the package of 14.175 g(1/2 oz) 1 g of different oils costs from US \$ 0.49 (Citronella) to US \$1.3 (Juniperus Berry). In the package of 907.2 g (32 oz) 1 g costs from US \$0.32 (myrtle) to US \$5.54(Jasmine Absolute). In the package of 3789 ml (US gallon) 1 mL of different essential oils costs from US \$0.064 (Citronella) to US \$0.47 (Oregano) (the producer Dreaming Earth Botanicals, LLC, Ashenwill, NC, USA). # Potential of the Introduction and the Use of Essential Oil to Fumigate Stored Grain Analyzing the prices of EO produced by numerous producers by searching data available on internet, by direct contact with the producers and by analyzing the results of the effectiveness of EO published by numerous authors, it is obvious that the prices may be the limited factor for the adoption and its wider use (Table 2). It is a great difference in approximate concentrations of phosphine, methyl bromide and EO 1.8 - cineole to give 95% and higher mortality of S. oryzae with 24 h exposure. According to Champ and Dyte (1976) [40] and re – calculated from Ct based on 20 h exposure, the approximate concentration of phosphine is 0.03 g/m³; the approximate concentration of methyl bromide, from Ct based on 5 h exposure, is 1 g/ m³. Lee et al. (2004)^[21] determined the concentration of 42 g/m^3 of 1,8 – cineole to give 95% mortality of *S. oryzae*. Korunic and Rozman(2008)^[39] determined that 50 g/m³ of cineole in an empty space and 48 h exposure caused 100% mortality of *S. oryzae*, in a space 50% filled with wheat grain the mortality was 57% and in a space filled up 95% with wheat grain the mortality was 34% only. Shaaya et al. $(1997)^{[18]}$ found out that the highly active *Labiatae* sp. oil ZP51, in a concentration of 1.4 – 4.5 μ L/L air and exposure time of 24 h caused 90% killed *T. castaneum*, *S. oryzae*, *R. dominica* and O. surinamensis. However, in columns 70% filled up with wheat, a concentration of 50 µL/L and 7 d exposure were needed to obtain 94 100% kill of the insects. Lee et al. (2004) [21] found out that EO extracted form Eucalyptus nicholii, E. codonocarpa, E. blakelyi, Callistemon sieberi, Malaleuca fulgens and M. armillary were 3 to 5 times less toxic to S. oryzae, R. dominica and T. castaneum in a space 50% filled up with wheat in comparison with the toxicity in an empty space. Table 1. The approximate prices of essential oils (EO) | Table 1. The approximate prices of essential ons (EO) | | | | | | | |-------------------------------------------------------|--------------------------------------------------------|-----------------------------------|----------------------------|--------------------------------|--|--| | Essential oil | Producer | Size of package * | Cost of package
(US \$) | Cost of 1 g or 1 mL
(US \$) | | | | Lavender Provence
Oganic (France) | Dreaming earth botanicals,
LLC, Ashenville, NC, USA | 3 780 mL
(US galloon) | 173.00 | 0.045 | | | | Bulgarian 0Lavender | Snowdrift Farm, Inc. | $2268 \mathrm{g}(80\mathrm{oz})$ | 285.00 | 0.125 | | | | Lavandin Organic | Dreaming earth botanicals, LLC, Ashenville, NC, USA | 3780 mL
(US galloon) | 623.00 | 0.164 | | | | Rosemary (Maroccan) | Snowdrift Farm, Inc. | $2268 \mathrm{g}(80\mathrm{oz})$ | 154.95 | 0.068 | | | | Rosemary (Spanish) | Dreaming earth botanicals, LLC, Ashenville, NC, USA | 3780 mL
(US gallon) | 528.00 | 0.139 | | | | Thyme linalool | Dreaming earth botanicals, LLC, Ashenville, NC, USA | 907.2g(32 oz) | 408.00 | 0.449 | | | | Bay(Laurus nobilis) | Dreaming earth botanicals, LLC, Ashenville, NC, USA | 3789 mL
(US gallon) | 1214.00 | 0.320 | | | | Pepper, black | Dreaming earth botanicals, LLC, Ashenville, NC, SA | 3789 mL
(US gallon) | 752.00 | 0.198 | | | | Bergamot | Dreaming earth botanicals, LLC, Ashenville, NC, USA | 907.2g(32 oz) | 338.00 | 0.372 | | | | Patchouli | Dreaming earth botanicals, LLC, Ashenville, NC, USA | 3789 mL
(US gallon) | 731.00 | 0.192 | | | | Jasmin Obsolute | Dreaming earth botanicals, LLC, Ashenville, NC, USA | 850.5g(30 oz) | 4717.00 | 5.546 | | | | Basil | Dreaming earth botanicals, LLC, Ashenville, NC, USA | 3789 mL
(US gallon) | 647.00 | 0.170 | | | | Oregano | Dreaming earth botanicals, LLC, Ashenville, NC, USA | 3789 mL
(US gallon) | 1806.00 | 0.476 | | | ^{*} The largest package available; smaller packages are significantly more expensive. One (1) kg of phosphine pellets costs about US \$41.00 US, whilst 1 kg of cineole in packages of 100g reaches about US \$236.00. When the highest dosage of phosphine pellets is applied (30 pellets t $^{-1}$) with 1 kg of phosphine it is possible to fumigate approximately 55 tons of grain. It means the cost of phosphine to fumigate one tone of grain is about US \$0.74. With 1 kg of 1,8 – cineole it is possible to fumigate 4 tons (Korunic and Rozman, 2008 $^{[39]}$; 95% space filled up with wheat) to about 23 tons of grain (Lee et al. 2004 $^{[21]}$;50% space filled up with wheat). It means the cost of 1,8 – cineole to fumigate one ton of grain is from approximately US \$10.00 to US \$59.00. The great effect of grain on the reduction of the effectiveness of EO may greatly increase the cost of the grain fumigation with EO and make them too expensive to be adopted for grain fumigation use. #### Conclusion Besides of different barriers under the process of the registration, we find such a high price for cineole, and for other essential oils as well, considering other characteristics (scent, sorption, penetration, aeration etc.), as a serious limiting factor for the application of natural essential oils in practice. We believe that there are two solutions to overcome the mentioned | | | Table 2. The at | pproximate pr | rices of esse | intial oils (EC | The approximate prices of essential oils (EO) and approximate $\cos t$ of fumigation of cubic meter | meter | |--------|--|---|------------------------|--------------------------|------------------------------|---|--| |
16 | Essential oil | Producer | Size of
package * | Cost of package (US \$) | Cost of 1 g or 1 mL (US \$) | Approximative
concentration; reference | Approxi – mate cost(US \$)
to fumigate 1 m ^{3 * *} | | | Eucalyptus globulus (the usual eucalyptus) | Dreaming earth botanicals, LLC, Ashenville, NC, USA | 3780 mL
(US gallon) | 557.00 | 0.147 | $\mathrm{LD}_{so} = 28.9~\mu\mathrm{L/L}$ against S. oryzae [29] | Much more than [4.2] | | | 1,8 - cineole | Acros organic | 900 | 23.60 | 0.236 | LD ₅₀ = 23.5 μL/L against S. oryzae [29] LC ₁₀₀ = 50μL/L against S. oryzae, T. castaneum, O. surinamensis, Musca domestica, Blatella germanica [20] LD ₅₅ for S. oryzae was 47.9 μL/L, for R. dominca was 30.4 and for T. castaneum 21 μL/ L, in an empty space [21] LD ₅₀ = from 3.5 to 3.5 to 466g μL/L against T. confusum all stages [38] 92.5% mortality of T. castaneum after 7 days of exposure to 138.8 μL/L [22] In an empty space LC ₁₀₀ = 50g/m ³ against S. oryzae, R. dominica and T. castaneum [39] In a space 50% filled up with grain, LC ₁₀₀ = 50g/m ³ for C. ferrugineus, 150g/m ³ for R. dominica, and 250g/m ³ for S. oryzae and T. castaneum [39] In a space 95% fill up with grain 50g/m ³ caused mortality of 88% (C. ferrugineus), 64% (R. dominica) and 4.5% (T. castaneum) [39] | Much more than 5. 11.8 Much more that 0.82 to109.9 32.7 11.8 11.8 5.5 (R. dominica) 59.0 (S. oryzae, T. castaneum) Much more than 11.8 | | - | Camphor | Aldrich | 100g | 74.45 | 0.744 | 77% mortality of T. castaneum after 7 days of exposure to 139 $\mu L/L^{\lfloor 22 \rfloor}$ | Much more than 74.4 | | I | Linalool | Aldrich | 100 g | 25.93 | 0.259 | 1 | Much more than 25.9 to 44.9 Much more than 2.2 to 47.5 More than 3.6 | | | | | | | | | | | Approxi – mate $cost(US \ \$)$ to fumigate 1 $m^{3 \ * \ *}$ | Much more than 5.5 to 9.6 | 9.65 | |--|---|---| | Approximative
concentration ; reference | $\mathrm{LD}_{50} = 21.5~\mu\mathrm{L/L}$ against Lycoriella mali $^{[36]}$ | Anise essential oil $LC_{99} = 98.5 \mu L/L$ against E. kuehniella and T. castaneum ^[27] | | Cost of Cost of 1 package g or 1 mL (US \$) (US \$) | 0.449 | 0.098 | | Cost of package (US \$) | 408.00 | 375.00 | | Size of
package * | 907.2g
(32 oz) | earth
LLC, 3789 mL
NC, (US gallon) | | ı | earth
LLC,
NC, | earth
LLC,
NC, | | Producer | Dreaming
botanicals,
Ashenville,
USA | Dreaming
botanicals,
Ashenville,
USA | | Essential oil | Thyme linalool | Aniseed
(Anise seed) | * the largest package available; smaller packages are significantly more expensive. * \$\tilde{\mu}L/L\$ is equal to ml in cubic meter; close to g in cubic meter depending on the density of EO(for example density of cineole is 0.9225 g/cm³, linahool 0.858 -0.868 g/cm³). barriers; significant reduction of the prices of natural EO, or if possible, to produce the active components of natural EO synthetically. ### References - [1] Fields P G. Diatomaceous earth; Advantages and limitations. In: Jin Z, Liang Q, Liang Y, Tan X., and Guan L eds. Proceedings of the 7th International Conference on Stored-Product Protection. Beijing, P. R. China, 14 19 October 1998. Sichuan Publishing House of Science and Technology, Chengdu, Sichuan Province, P. R. China, 1999:781 784 - [2] Daglish G J. Opportunities and barriers to the adoption of new grain protectants and fumigants. In: Lorini I, Bacaltchuk B, Beckel H, Deckers D, Sundfeld E, dos Santos J P, Biagi J D, Celaro J C, Faroni L R D A, Bortolini L de O F, Sartori M R, Elias M C, Guedes R N C, da Fonseca R G, Scussel V M eds. Proceedings of the 9th International Working Conference on Stored Product Protection, Campinas, Sao Paolo, Brazil, Brazilian Post-harvest Association ABRAPOS, 15 18 October 2006;209 –216 - [3] S Navarro. New global challenges to the use of gaseous treatments in stored products. In: Lorini I, Bacaltchuk B, Beckel H, Deckers D, Sundfeld E, dos Santos J P, Biagi J D, Celaro J C, Faroni L R D A, Bortolini L de O F, Sartori M R, Elias M C, Guedes R N C, da Fonseca R G, Scussel V M eds. Proceedings of the 9th International Working Conference on Stored Product Protection, Campinas, Sao Paolo, Brazil, Brazilian Postharvest Association ABRAPOS, 15 18 October 2006;495 516 - [4] Ducom P J F. The Return of the Fumigants. In: Lorini I, Bacaltchuk B, Beckel H, Deckers D, Sundfeld E, dos Santos J P, Biagi J D, Celaro J C, Faroni L R D A, Bortolini L de O F, Sartori M R, Elias M C, Guedes R N C, da Fonseca R G, Scussel V M eds. Proceedings of the 9th International Working Conference on Stored Product Protection, Campinas, Sao Paolo, Brazil, Brazilian Post-harvest Association ABRAPOS, 15 18 October 2006:510 –516 - [5] Bell C H. Factors affecting the efficacy of sulfuryl fluoride as a fumigant. In: Lorini I, Bacaltchuk B, Beckel H, Deckers D, Sundfeld E, dos Santos J P, Biagi J D, Celaro J C, Faroni L R D A, Bortolini L de O F, Sartori M R, Elias M C, Guedes R N C, da Fonseca R G, Scussel V M eds. Proceedings of the 9th International Working Conference on Stored Product Protection, Campinas, Sao Paolo, Brazil, Brazilian Post-harvest Association ABRAPOS, 15 18 October 2006:519 526 - [6] Tsai W T, Mason L, Ileleyi K E, A Preliminary Report of Sulfuryl Fluoride and Methyl Bromide Fumigation of Flour Mills. In: Lorini I, Bacaltchuk B, Beckel H, Deckers D, Sundfeld E, dos Santos J P, Biagi J D, Celaro J C, Faroni L R D A, Bortolini L de O F, Sartori M R, Elias M - C, Guedes R N C, da Fonseca R G, Scussel V M eds. Proceedings of the 9th International Working Conference on Stored Product Protection, Campinas, Sao Paolo, Brazil, Brazilian Post-harvest Association ABRAPOS, 15 18 October 2006:595 599 - [7] Chayapraser W, Maier D E, Ileleyi K E, et al. Real-time monitoring of a flour mill fumigation with sulfuryl fluoride. In: Lorini I, Bacaltchuk B, Beckel H, Deckers D, Sundfeld E, dos Santos J P, Biagi J D, Celaro J C, Faroni L R D A, Bortolini L de O F, Sartori M R, Elias M C, Guedes R N C, da Fonseca R G, Scussel V M eds. Proceedings of the 9th International Working Conference on Stored Product Protection, Campinas, Sao Paolo, Brazil, Brazilian Post-harvest Association ABRAPOS, 15 18 October 2006;541 550 - [8] Griffith T. Propylene oxide, a registered fumigant, a proven insecticide. In: Obenauf G L, Williams A eds. Annual International Research Conference Conference on Methyl Bromide Alternatives and Emissions Reduction. Nov 1 4, 1999, UNEP and USDA, San Diego, California, 1999:71 - [9] S Navarro, Iskber A A, Finkelman S et al. Effectiveness of short exposures of propylene oxide alone and in combination with low pressure or carbon dioxide against *Tribolium castaneum* (Herbst) (Coleoptera: Tenebrionidae). Journal of Stored Products Research, 2004, 40: 197 205 - [10] Isikber A A, Navarro S, Finkelman S et al. Propylene oxide as a potential quarantine fumigant for insect disinfestation of nuts. In: Lorini I, Bacaltchuk B, Beckel H, Deckers D, Sundfeld E, dos Santos J P, Biagi J D, Celaro J C, Faroni L R D A, Bortolini L de O F, Sartori M R, Elias M C, Guedes R N C, da Fonseca R G, Scussel V M eds. Proceedings of the 9th International Working Conference on Stored Product Protection, Campinas, Sao Paolo, Brazil, Brazilian Post-harvest Association ABRAPOS, 15 18 October 2006:630 –634 - [11] Greech N M, Ohr H D, Sims J J. Methyl iodide as a soil fumigante. U. S patent No. 5,518,692, May 1996. U. S. Patent and Trade – mark Office, 1996 - [12] Mason L J, Strait C A, Woloshuk C P. et al. Controlling stored grain insects with ozone fumigation. In: Jin Z, Liang Q, Liang Y, Tan X., and Guan L eds. Proceedings of the 7th International Conference on Stored-Product Protection. Beijing, P. R. China, 14 19 October 1998. Sichuan Publishing House of Science and Technology, Chengdu, Sichuan Province, P. R. China, 1999:536 –547 - [13] Annis P C, Graver J E, Van S. Ethyl formate a fumigant with potential for rapid action. In:2000 Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reduction. Orlando, 6 9 Nov, 2000:70 1;70 3 - [14] Yong L R, Trang L V. Cyanogen; A possible fumigant for flour/rice mills and space fumigation. In: Crenland P F, Armitage D M, Bell C H, Cogan P M, Highley E eds. Proceedings of the 8th International Working Conference on Stored Product Protection, York, CAB International, Oxon, UK, 2003:651-653 - [15] Zettler J L, Leesch J G, Gill R F et al. Chemical alternatives for methyl bromide and phosphine treatments for dried fruits and nuts. In: Jin Z, Liang Q, Liang Y, Tan X., and Guan L eds. Proceedings of the 7th International Conference on Stored-Product Protection. Beijing, P. R. China, 14 19 October 1998. Sichuan Publishing House of Science and Technology, Chengdu, Sichuan Province, P. R. China, 1999;561 554 - [16] Prakash A, Rao J. Botanical Pesticides in Agriculture. CRC Press, Inc., 2000 Corporate Bld, N. W., Boca Raton, FL, USA, 1997;480 - [17] Isman M B. Plant essential oils for pest and diseases management. Crop Protection, 2000, 19: 603-608 - [18] Shaaya E, Kostjukovski M, Eilberg J et al. Plant oils as fumigants and contact insecticides for the control of stored-product insects. Journal of Stored Products Research, 1997, 33:7-15 - [19] Pascual-Villalobos M J. Volatile activity of plant essential oils against stored product beetle pests. In: Crenland P F, Armitage D M, Bell C H, Cogan P M, Highley E eds. Proceedings of the 8th International Working Conference on Stored Product Protection, York, CAB International, Oxon, UK, 2003:648-650 - [20] Lee S, Peterson C J, Coats J R. Fumigation toxicity of monoterpenoids to several stored product insects. ,2003,77 –85 - [21] Lee B H, Annis P C, Tumaalii F. Fumigant toxicity of essential oils from the Myrtaceae family and 1,8-cineole against 3 major stored-grain insects. Journal of Stored Products Research, 2004,40:553-564 - [22] Rozman V, Kalinovic I, Korunic Z. Toxicity of naturally occurring compounds of Lamiaceae and Lauraceae to three stored-product insects., 2007, 43:349 355 - [23] Isman M B. Neem and other botanical insecticides: Barriers to commercialization. Phytoparasitica, 1997, 25:339 344 - [24] Rajendran R, Sriranjini V. Plant products as fumigants for stored-product insect control. Journal of Stored Product Research, 2008, 44:126-135 - [25] Liu Z L, Ho S H. Bioactivity of the essential oil extracted from Evodia rutaecarpa Hook f. et Thomas against the grain storage insects, Sitophilus zeamais Motsch. and Tribolium castaneum(Herbst)., 1999, 317 328 - [26] Rahman M M, Schmidt G H. Effect of Acorus calamus (L.) (Araceae) essential oil vapours from various origins on Callosobruchus phaseoli (Gyllenhal) (Coleoptera: Bruchidae)., 1999, 35:285-295 - [27] Tun I, Berger B M, Erler F et al. Ovicidal activi- - ty of essential oils from five plants against two stored-product insects. ,2000,161 168 - [28] S nchez Ramos I, Casta era P. Acaricidal activity of natural monoterpenes on Tyrophagus putrescentiae (Schrank), a mite of stored food., 2000, 37:93 101 - [29] Lee B H, Choi W S, Lee S E et al. Fumigant toxicity of essential oils and their constituent compounds towards the rice weevil, Sitophilus oryzae(L.).,2001,20:317-320 - [30] Papachristos D P, Stamopoulos D C. Toxicity of vapours of three essential oils to the immature stages of Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae)., 2002, 38:365-373 - [31] Prajapati V, Tripathi A K, Aggarwal K K et al. Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresource Technology, 2005, 96: 1749 1757 - [32] Ketoh G K, Koumaglo H K, Glitho I. A. Inhibition of *Callosobruchus maculatus* (F.) (Coleoptera: Bruchidae) development with essential oil extracted from *Cymbopogon schoenanthus* L. Spreng. (Poaceae), and the wasp *Dinarmus basalis* (Rondani) (Hymenoptera: Pteromalidae)., 2005,41:363-371 - [33] Ketoh G K, Koumaglo H K, Glitho I. A et al. Comparative effects of Cymbopogon schoenanthus essential oil and piperitone on Callosobruchus maculatus development., 2006, 77:506 510 - [34] Tapondjou A L, Adler C, Fontem D A et al. Bioactivities of cymol and essential oils of Cupressus sempervirens and Eucalyptus saligna against Sitophilus zeamais Motschulsky and Tribolium confusum du Val., 2005, 41:91–102 - [35] Wang J, Zhu F, Zhou X M et al. Repellent and fumigant activity of essential oil from Artemisia vulgaris to Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae)., 2006, 42:339 347 - [36] Choi W S, Park B S, Lee Y H et al. Fumigant toxicities of essential oils and monoterpenes against Lycoriella mali adults. ,2006,25:398 401 - [37] Negahban M, Moharramipour S, Sefidkon F. Fumigant toxicity of essential oils and their constituent compounds towards the rice weevil, Sitophilus oryzae (L.)., 2007, 43:123-128 - [38] Stamopoulos D C, Damos P, Karagianidou G. Bioactivity of five monoterpenoid vapours to *Tribolium confusum* (du Val) (Coleoptera: Tenebrionidae). ,2007,43:571-577 - [39] Korunic Z, Rozman V. Fumigacija cineolom *in vitro* (Fumigation with cineole essential oil *in vitro*). In: Korunic Z ed. Proceedings of the Croatian Seminar DDD and ZUPP 2008, Korunic d. o. o. Sibenik, Croatia, April 2 4, 2008;193 203 - [40] Champ B R, Dyte Ĉ E. Report of FAO global survey of pesticide susceptibility of stored grain pests. FAO Plant Production and Protection Series No. 5, FAO, 1976, Rome